Percolation in a hierarchical random graph

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Percolation in a hierarchical random graph

We study asymptotic percolation as N → ∞ in an infinite random graph GN embedded in the hierarchical group of order N , with connection probabilities depending on an ultrametric distance between vertices. GN is structured as a cascade of finite random subgraphs of (approximate) Erdös-Renyi type. We give a criterion for percolation, and show that percolation takes place along giant components of...

متن کامل

First passage percolation on the random graph

We study first passage percolation on the random graph Gp(N) with exponentially distributed weights on the links. For the special case of the complete graph this problem can be described in terms of a continuous time Markov chain and recursive trees. The Markov chain X(t) describes the number of nodes that can be reached from the initial node in time t. The recursive trees, which are uniform tr...

متن کامل

Dynamics of k-core percolation in a random graph

We study the edge deletion process of random graphs near a k-core percolation point. We find that the time-dependent number of edges in the process exhibits critically divergent fluctuations. We first show theoretically that the k-core percolation point is exactly given as the saddle-node bifurcation point in a dynamical system. We then determine all the exponents for the divergence based on a ...

متن کامل

Edge Percolation on a Random Regular Graph of Low Degree

Consider a uniformly random regular graph of a fixed degree d≥ 3, with n vertices. Suppose that each edge is open (closed), with probability p(q = 1− p), respectively. In 2004 Alon, Benjamini and Stacey proved that p = (d − 1) is the threshold probability for emergence of a giant component in the subgraph formed by the open edges. In this paper we show that the transition window around p has wi...

متن کامل

Explosive Percolation in Erdős-Rényi-Like Random Graph Processes

The evolution of the largest component has been studied intensely in a variety of random graph processes, starting in 1960 with the Erdős-Rényi process (ER). It is well known that this process undergoes a phase transition at n/2 edges when, asymptotically almost surely, a linear-sized component appears. Moreover, this phase transition is continuous, i.e., in the limit the function f(c) denoting...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications on Stochastic Analysis

سال: 2007

ISSN: 0973-9599

DOI: 10.31390/cosa.1.1.04